Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gene ; 895: 148006, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37979950

RESUMO

The pine-wood invasive species nematode Bursaphelenchus xylophilus causes great forestry damage globally, particularly in Eurasia. B. xylophilus can hybridize with its native sibling, Bursaphelenchus mucronatus, with whom it shares an interestingly asymmetric mating behavior. However, the molecular mechanism underlying interspecific asymmetric mating has yet to be clarified. ntr-1, a nematocin receptor gene, is involved in an oxytocin/vasopressin-like signaling system that can regulate reproduction. Structural analysis using bioinformatics revealed that both Bxy- and Bmu-ntr-1 encode 7TM-GPCR, a conserved sequence. In situ hybridization and qPCR showed that both Bxy- and Bmu-ntr-1 were highly expressed in adult nematodes. Specifically, Bxy-ntr-1 was expressed in the vulva of females and caudal gonad of males, whereas Bmu-ntr-1 was expressed in the postal vulva and uterus of females and the whole gonads of males. Furthermore, RNAi of ntr-1 further demonstrated the biological function of interspecific mating: ntr-1 can regulate mating behavior, lead to male-female specificity, and ultimately result in interspecific differences. In B. mucronatus, ntr-1 influenced male mating more than female mating success, while downregulation of ntr-1 in B. xylophilus resulted in a significant decline in the female mating rate. Competitive tests revealed that the mating rate of the cross significantly declined after downregulation of Bxy♀- and Bmu♂-ntr-1, but no obvious change occurred in the reciprocal cross. Thus, we speculate that ntr-1 may be the key factor behind interspecific asymmetric mating. The current study (1) demonstrated the regulatory function of ntr-1 on mating behavior and (2) theoretically revealed the molecular basis of interspecific asymmetric mating.


Assuntos
Nematoides , Pinus , Tylenchida , Animais , Feminino , Masculino , Humanos , Xylophilus , Irmãos , Nematoides/genética , Reprodução , Espécies Introduzidas , Tylenchida/genética
2.
Int J Mol Sci ; 24(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38069165

RESUMO

Plant parasitic nematodes are important phytopathogens that greatly affect the growth of agricultural and forestry plants. Scientists have conducted several studies to prevent and treat the diseases they cause. With the advent of the genomics era, the genome sequencing of plant parasitic nematodes has been considerably accelerated, and a large amount of data has been generated. This study developed the Plant Parasitic Nematodes Database (PPND), a platform to combine these data. The PPND contains genomic, transcriptomic, protein, and functional annotation data, allowing users to conduct BLAST searches and genome browser analyses and download bioinformatics data for in-depth research. PPND will be continuously updated, and new data will be integrated. PPND is anticipated to become a comprehensive genomics data platform for plant parasitic nematode research.


Assuntos
Nematoides , Parasitos , Tylenchida , Animais , Nematoides/genética , Genômica , Plantas/genética , Plantas/parasitologia , Genoma , Tylenchida/genética , Parasitos/genética , Doenças das Plantas/parasitologia
3.
Front Physiol ; 13: 1024409, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467707

RESUMO

Bursaphelenchus xylophilu is a worldwide quarantine nematode, causing huge economic losses and ecological disasters in many countries. The sex ratio of B. xylophilus plays an important role in the nematode infestation. The laf-1-related genes are highly conserved in animals, playing crucial roles in sex determination. Therefore, we investigated the expression pattern and biological function of its orthologue, Bxy-laf-1 in B. xylophilus. Bxy-laf-1 has two typical conserved DNA-binding domains, DEAD and Helicase C. The real-time quantitative PCR data revealed that Bxy-laf-1 expression was required throughout the entire life of B. xylophilus, with the maximum expression in the J2 stage and the lowest expression in the adult stage. mRNA in situ hybridization showed that Bxy-laf-1 is mainly located in the cephalopharynx and reproductive organs of B. xylophilus. RNA interference (RNAi) indicated that the head swing frequency was dramatically decreased. The RNA interference results displayed that a significant reduction in motility was observed in the hatched larvae. The female to male sex ratio was also decreased in the F0 and F1 generations, but recovered in the F2 generation. The tail of female adults with eggs in the belly appeared deformities. This phenomenon appeared in the F0 and F1 generations, but recovered in the F2 generation. Bxy-laf-1 is a typical sex-determination gene with distinct expression patterns in males and females. As demonstrated in other species, the sex ratio was altered after knocking down Bxy-laf-1 expression. The results of this study contribute to our understanding of the molecular processes of Bxy-laf-1 in B. xylophilus, which may provide clues about how to control pine wilt disease by inhibiting ontogenic growth and reducing nematode fertility.

4.
Sci Rep ; 12(1): 14796, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042283

RESUMO

Bursaphelenchus xylophilus is a notorious invasive species, causing extensive losses to pine ecosystems globally. Previous studies had shown that the development of B. xylophilus was seriously suppressed by light. However, the mechanism involved in the inhibition is unknown. Here, it is the first report that Bxy-madd-4 is a light-regulated gene, plays a potential role in B. xylophilus in responding to the blue light. Transcriptome sequencing revealed that the expression level of Bxy-madd-4 declined by 86.39% under blue light. The reverse transcription quantitative real-time PCR results were in accord with the transcriptome sequencing, confirming the expression level of Bxy-madd-4 was suppressed by blue light. Bxy-madd-4 promoter::mCherry reporter constructed in Caenorhabditis elegans were utilized to mimic the spatiotemporal expression patterns of Bxy-madd-4. Bxy-madd-4A promoter activity had a strong continuity throughout all development stages in C. elegans. Further RNA interference indicated that only 36.8% of the Bxy-madd-4 dsRNA treated embryos were hatched. Moreover, 71.6% of the hatched nematodes were abnormal, such as particles on the body surface and concave tissues. Our findings contribute towards a better understanding of the mechanism of light against the destructive invasive nematode, providing a promising hint for control of the destructive invasive nematode.


Assuntos
Proteínas de Caenorhabditis elegans , Pinus , Rabditídios , Tylenchida , Animais , Caenorhabditis elegans , Ecossistema , Proteínas do Tecido Nervoso , Tylenchida/genética , Xylophilus
5.
J Vis Exp ; (181)2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35343962

RESUMO

The pinewood nematode, Bursaphelenchus xylophilus, is one of the most destructive invasive species worldwide, causing the wilting and eventual death of pine trees. Despite the recognition of their economic and environmental significance, it has thus far been impossible to study the detailed gene functions of plant-parasitic nematodes (PPNs) using conventional forward genetics and transgenic methods. However, as a reverse genetics technology, RNA interference (RNAi) facilitates the study of the functional genes of nematodes, including B. xylophilus. This paper outlines a new protocol for RNAi of the ppm-1 gene in B. xylophilus, which has been reported to play crucial roles in the development and reproduction of other pathogenic nematodes. For RNAi, the T7 promoter was linked to the 5'-terminal of the target fragment by polymerase chain reaction (PCR), and double-stranded RNA (dsRNA) was synthesized by in vitro transcription. Subsequently, dsRNA delivery was accomplished by soaking the nematodes in a dsRNA solution mixed with synthetic neurostimulants. Synchronized juveniles of B. xylophilus (approximately 20,000 individuals) were washed and soaked in dsRNA (0.8 µg/mL) in the soaking buffer for 24 h in the dark at 25 °C. The same quantity of nematodes was placed in a soaking buffer without dsRNA as a control. Meanwhile, another identical quantity of nematodes was placed in a soaking buffer with green fluorescent protein (gfp) gene dsRNA as a control. After soaking, the expression level of the target transcripts was determined using real-time quantitative PCR. The effects of RNAi were then confirmed using microscopic observation of the phenotypes and a comparison of the body size of the adults among the groups. The current protocol can help advance research to better understand the functions of the genes of B. xylophilus and other parasitic nematodes toward developing control strategies through genetic engineering.


Assuntos
Nematoides , Pinus , Tylenchida , Animais , Pinus/parasitologia , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Interferência de RNA , Tylenchida/genética , Xylophilus
6.
Gene ; 823: 146350, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35189249

RESUMO

Bursaphelenchus xylophilus is an invasive plant-parasitic nematode causing the notorious pine wilt disease (PWD) worldwide, which results in huge economic losses. G protein-coupled receptors (GPCRs) play an essential role in mating and reproduction behavior of animals. As a unique biogenic amine in invertebrates, octopamine (OA) can regulate a variety of physiological and behavioral responses by binding specific GPCRs. These specific GPCRs are also called octopamine receptors (OARs), and octr-1 is one of them. However, Bxy-octr-1 is unknown in B. xylophilus. Therefore, we investigated the expression pattern and biological function of Bxy-octr-1. Bioinformatics analysis indicated that Bxy-octr-1 was evolutionarily conserved. The real-time quantitative PCR data revealed that Bxy-octr-1 expression was required throughout the entire life of B. xylophilus. mRNA in situ hybridization showed that Bxy-octr-1 was mainly located in the cephalopharynx, body wall muscle, intestine, and gonadal organs of B. xylophilus. RNA interference (RNAi) showed that embryo hatching rates and locomotion speeds were both dramatically decreased. Obvious abnormal phenotypes were observed in the second-stage of juveniles after RNAi treated. Furthermore, its ontogenesis was stunting. Lack of Bxy-octr-1 reduced fecundity of females, of which 31.25% of them could not successfully ovulate. In addition, the error positioning ratio of the nematode was significantly increased. Our study suggests that Bxy-octr-1 is indispensable for locomotion, early ontogenesis and mating behavior in B. xylophilus.


Assuntos
Clonagem Molecular/métodos , Receptores de Amina Biogênica/genética , Receptores de Amina Biogênica/metabolismo , Tylenchida/fisiologia , Animais , Biologia Computacional/métodos , Evolução Molecular , Feminino , Regulação da Expressão Gênica , Hibridização in Situ Fluorescente , Masculino , Fenótipo , Interferência de RNA , Análise de Sequência de DNA , Distribuição Tecidual , Tylenchida/genética , Tylenchida/metabolismo
7.
Pest Manag Sci ; 77(1): 138-147, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32652887

RESUMO

BACKGROUND: Bursaphelenchus xylophilus is one of the most destructive invasive species, causing extensive economic losses worldwide. The sex ratio of female to male of B. xylophilus plays an important role in the nematode infestation. However, little is known about the processes of its sex determination. The double sex/mab-3-related family of transcription factors are highly conserved in animals, playing crucial roles in sex determination, spermatogenesis and ontogenesis. We therefore investigated its orthologue, Bxy-mab-3, in B. xylophilus. RESULTS: Bxy-mab-3 has two typical conserved DNA-binding domains. It was observed in J2 (the second-stage of juveniles), J3, J4 and male adults (specifically on the spicules), but not in eggs or female adults via mRNA in situ hybridization. RNA-Seq indicated significantly higher expression in males. RNAi showed that the body size and sperm size of male adults were markedly smaller than those of the controls. Meanwhile, almost all the RNAi-treated males failed to mate with the normal females, even 26.34% of interfered males did not produce sperm. However, RNAi of Bxy-mab-3 had no effect on the sex ratio of B. xylophilus. CONCLUSION: Bxy-mab-3 is indispensable for spermatogenesis, ontogenesis and mating behavior. It is a typical sex-determination gene with differential expression in males and females. However, knocking down Bxy-mab-3 expression could not alter the sex ratio as seen in other species. Our findings contribute towards a better understanding of the molecular events of Bxy-mab-3 in B. xylophilus, which provides promising hints for control of pine wilt disease by blocking ontogenesis and decreasing nematode fecundity.


Assuntos
Pinus , Rabditídios , Tylenchida , Animais , Feminino , Masculino , Espermatogênese , Tylenchida/genética , Xylophilus
8.
Pest Manag Sci ; 76(1): 205-214, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31140718

RESUMO

BACKGROUND: The pine wood nematode (PWN) Bursaphelenchus xylophilus is the causal agent of pine wilt disease (PWD). This disease is a serious threat to pine forests globally. The fuca gene encodes α-L-fucosidase, which plays crucial roles in numerous biological and pathological processes in bacteria, fungi, plants and animals. To find promising control strategies against PWD, we investigated the expression and functions of Bxy-fuca in B. xylophilus. RESULTS: Bxy-fuca encoding α-L-fucosidase is highly conserved within the deduced functional domains and key residues. It is expressed continuously across all developmental stages of B. xylophilus. mRNA in situ hybridization demonstrated that Bxy-fuca was mainly localized in the body wall muscles and intestine. RNA interference indicated that the zygotic expression of Bxy-fuca was indispensable for embryogenesis. The rate of B. xylophilus egg hatch was significantly decreased after Bxy-fuca was interfered. Postembryonic silence of Bxy-fuca resulted in a dramatic decrease in the longevity of and the total number of eggs produced by B. xylophilus. In addition, the motility of the nematode was greatly hampered with a significant drop in head thrashing frequency. CONCLUSION: Bxy-fuca plays crucial roles in development, lifespan and reproduction of B. xylophilus. Our results provide promising hints for control of PWD by blocking embryogenesis and ontogenesis, decreasing nematode fecundity, and disrupting the connection between B. xylophilus and its vector beetle by preventing nematode movement into the tracheal system. © 2019 Society of Chemical Industry.


Assuntos
Pinus , Animais , Doenças das Plantas , Reprodução , alfa-L-Fucosidase
9.
J Vis Exp ; (118)2016 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-28060317

RESUMO

A method for observing and quantifying the mating behavior of the pinewood nematode, Bursaphelenchus xylophilus, was established under a stereomicroscope. To improve the mating efficiency of B. Xylophilus and to increase the chances of mating observation, virgin adults were cultured and used for the investigation. Eggs were obtained by keeping the nematodes in water and allowing the females to lay eggs for 10 min. The second-stage juveniles (J2) were synchronized by incubating the eggs for 24 h at 25 °C in the dark, and the early J4 were obtained by culturing the J2 with grey mold, Botrytis cinerea, for another 52 h. At this time point, most J4 nematodes could be clearly distinguished as being male or female using their genital morphology. The male and female J4 were collected and cultured separately in two different Petri dishes for 24 h to get virgin adult nematodes. A virgin male and a virgin female were paired in a drop of water in the well of a concave slide. The mating behavior was filmed with a video recorder under a stereomicroscope. The whole period of the mating process was 82.8 ±3.91 min (mean ±SE) and could be divided into 4 different phases: searching, contacting, copulating, and lingering. The mean minutes of duration were 21.8 ± 2.0, 28.0 ± 1.9, 25.8 ± 0.7 and 7.2 ± 0.5, respectively. Eleven sub-behaviors were described: cruising, approaching, encountering, touching, hooping, locating, attaching, ejaculating, separating, quiescence, and roaming. Interestingly, obvious intra-sexual competition was observed when one female was grouped with 3 males or one male with 3 females. This protocol is useful and valuable, not only in investigating the mating behavior of B. xylophilus, but also in acting as a reference for ethological studies of other nematodes.


Assuntos
Microscopia , Comportamento Sexual Animal , Tylenchida/fisiologia , Gravação em Vídeo , Animais , Feminino , Fungos , Masculino
10.
J Nematol ; 47(2): 126-32, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26170474

RESUMO

To understand the efficacy of emamectin benzoate, avermectin, milbemectin, and thiacloprid on the reproduction and development of Bursaphelenchus xylophilus, seven parameters, namely population growth, fecundity, egg hatchability, larval lethality, percent larval development, body size, and sexual ratio, were investigated using sublethal (LC20) doses of these compounds in the laboratory. Emamectin benzoate treatment led to a significant suppression in population size, brood size, and percent larval development with 411, 3.50, and 49.63%, respectively, compared to 20850, 24.33, and 61.43% for the negative control. The embryonic and larval lethality increased obviously from 12.47% and 13.70% to 51.37% and 75.30%, respectively. In addition, the body length was also significantly reduced for both males and females in the emamectin benzoate treatment. Avermectin and milbemectin were also effective in suppressing population growth by increasing larval lethality and reducing larval development, although they did not affect either brood size or embryonic lethality. Body length for both male and female worms was increased by avermectin. Thiacloprid caused no adverse reproductive effects, although it suppressed larval development. Sexual ratio was not affected by any of these four nematicides. Our results indicate that emamectin benzoate, milbemectin, and avermectin are effective against the reproduction of B. xylophilus. We think these three nematicides can be useful for the control of pine wilt disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...